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Abstract

We introduce a new stochastic verification algorithm that formally quantifies the
behavioural robustness of any time-continuous process formulated as a continuous-
depth model. The algorithm solves a set of global optimization (Go) problems
over a given time horizon to construct a tight enclosure (Tube) of the set of all
process executions starting from a ball of initial states. We call our algorithm
GoTube. Through its construction, GoTube ensures that the bounding tube is
conservative up to a desired probability. GoTube is implemented in JAX and
optimized to scale to complex continuous-depth models. Compared to advanced
reachability analysis tools for time-continuous neural networks, GoTube provably
does not accumulate over-approximation errors between time steps, and avoids the
infamous wrapping effect inherent in symbolic techniques. We show that GoTube
substantially outperforms state-of-the-art verification tools in terms of the size of
the initial ball, speed, time-horizon, task completion, and scalability, on a large set
of experiments. GoTube is stable and sets the state-of-the-art for its ability to scale
up to time-horizons well-beyond what has been possible before.

1 Introduction
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Figure 1: Reachtubes of LRT-NG (Gruenbacher
et al., 2020) and GoTube for a CT-RNN controlling
CartPole-v1 environment. CAPD (Kapela et al.,
2020) and Flow* (Chen et al., 2013a) failed.

The use of deep-learning systems powered by
continuous-depth models continues to grow, es-
pecially due to the revival of neural ordinary dif-
ferential equations (Neural ODEs) (Chen et al.,
2018). Ensuring their safety and robustness
is thus becoming a major imperative, particu-
larly in high-stakes decision-making applica-
tions, such as medicine, automation, and finance.
A particularly appealing approach is to construct
a tight over-approximation of the set of states
reached over time according to the neural net-
work’s dynamics (a bounding tube), and provide
deterministic or stochastic guarantees for the
conservativeness of the tube’s bounds.

Deterministic verification approaches ensure
conservative bounds (Chen et al., 2013a; Gowal
et al., 2018; Mirman et al., 2018; Bunel et al.,
2020a; Kapela et al., 2020; Gruenbacher et al.,
2020), but often sacrifice speed and accuracy
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Figure 2: GoTube in a nutshell. The center x0 of ball B0 =B(x0, δ0), with δ0 the initial perturbation,
and samples x drawn uniformly from B0’s surface, are numerically integrated in time to χ(tj , x0)
and χ(tj , x), respectively. The Lipschitz constant of χ(tj , x) and their distance dj(x) to χ(tj , x0)
are then used to compute Lipschitz caps around samples x, and the radius δj of bounding ball Bj .
The ratio between the caps’ surfaces and B0’s surface are correlated to the desired confidence 1− γ.

(Ehlers, 2017), and thus scalability (see CAPD,
Flow*, and LRTNG in Fig. 1). Stochastic methods on the other hand, only ensure a weaker notion
of conservativeness in form of confidence intervals (stochastic bounds), but this allows them to
design much more accurate and faster algorithms that scale up to much larger continuous-depth
models (Shmarov and Zuliani, 2015a; Bortolussi and Sanguinetti, 2014; Grunbacher et al., 2021) (see
this paper’s GoTube in Fig. 1).

It was recently shown that stochastic verification approaches based on Lagrangian reachability can
provably guarantee confidence intervals for a given continuous-depth model (Grunbacher et al., 2021).
The proposed SLR algorithm, performs both stochastic global optimization and local differential
optimization (Zhigljavsky and Zilinskas, 2008; Pontryagin, 2018), to construct in every time step a
bounding ball of the reachable states, and thus over time, a tight bounding Tube.

Interval arithmetic is used in this process to symbolically bound the magnitude of each ball’s
Lipschitz constant, and find reasonably tight spherical Lipschitz (don’t care) caps around the initial-
state samples taken from the initial ball. The ratio between the surface covered by all Lipschitz caps
and the surface of the initial ball is correlated to the desired probability. The radius of the initial ball
can be understood as quantifying the magnitude of a perturbation of its center.

Although this theoretical result suggested an elegant way to avoid compounding errors, and to relax
the computational overhead of multiple forward-propagations (standard in deterministic approaches
(De Palma et al., 2021)), its practical implementation faces three fundamental problems on its way
towards scalability: 1) The efficient sampling and propagation of tens of thousands of initial states.
2) The use of local gradient descent to search for local maxima. 3) The use of interval arithmetic to
compute a conservative upper bound for the Lipschitz constant.

Each of these problems renders a naive implementation intractable. While the implications of
Problem 1 are obvious, those for Problems 2-3 are more insidious. As one propagates all initial-state
samples in time according to the neural-network’s dynamics, the length of gradient descent through
backpropagation in Problem 2 increases with each time step. This leads to increasingly longer
computation times and to vanishing gradients that have to be curated.

Problem 3 is even more perfidious. The longer one propagates the initial states in time, the longer it
takes to compute the Lipschitz constant through interval arithmetic, and the more conservative its
approximation becomes due to wrapping effects. This in turn leads to increasingly smaller Lipschitz
caps. Ensuring the desired stochastic bounds thus requires increasingly more samples.

Motivated by these theoretical and practical problems, we introduce in this paper GoTube, an
algorithm and its associated tool for solving these problems in an elegant and nontrivial fashion.
On a large set of experiments with continuous-depth models, GoTube substantially outperforms
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state-of-the-art verification tools in terms of the size of the initial ball, speed, time-horizon, task
completion, and scalability. In particular, the main contributions of this paper are as follows:

• We solve Problem 1 by sampling and propagating the initial states in parallel, according
to the neural network’s dynamics. To this end we carefully and completely tensorized the
naive implementation, which allowed us to take advantage of state-of-the-art ML tools such
as JAX. As a result, we were able to easily work with tens of thousands of samples.

• We solve Problem 2 by getting rid of local differential optimization altogether. Once we were
able to run very large numbers of samples in parallel, the advantage of gradient-based search
was compensated for by using additional samples. This dramatically sped up computation
time, as it removed the propagation-horizon dependence. Hence the name GoTube.

• We solve Problem 3 by replacing the conservative interval-based computation of the Lipschitz
constant, with a statistical estimation of its value, based on the propagated samples. This
eliminated the dependence on the propagation horizon and the blow-up in the number of
samples. However, this required a new theory, ensuring desired stochastic bounds.

Compared to existing reachability analysis tools, GoTube does not accumulate over-approximation
errors between time steps; rather it bounds these errors by a user-defined parameter µ. Moreover,
GoTube avoids over-approximation errors of the Lipschitz constant inherent in symbolic techniques
by using mean-value statistics, with confidence 1−λ, for the conservativeness bounds.

We perform a variety of experiments with GoTube on continuous-time neural networks and benchmark
it against state-of-the-art baselines. We find that GoTube provides stochastic bounds up to arbitrary
time-horizons, a capability that was not possible to achieve with the other reachability-analysis
methods. We also observe that GoTube can use significantly larger perturbation radius for its initial
ball, compared to other contemporary verification methods. The volume of the computed bounding
tubes is also significantly tighter for continuous-depth models involving neural networks then the one
of other tools, a reason of why they do not blow up.

2 Related Work

Global Optimization. Efficient local optimization methods such as gradient descent cannot be
used for global optimization since such problems are typically non-convex. Thus, many advanced
verification algorithms tend to use global optimization schemes (Bunel et al., 2018, 2020a). Depending
on the properties of the objective function such as smoothness, various types of global optimization
techniques exist. For instance, interval-based branch-and-bound (BaB) algorithms (Neumaier, 2004;
Hansen and Walster, 2003) work well on differentiable objectives up to a certain scale, which has
recently been improved (De Palma et al., 2021). There are also Lipschitz-global optimization methods
for satisfying Lipschitz conditions (Piyavskii, 1972; Shubert, 1972; Malherbe and Vayatis, 2017;
Kvasov and Sergeyev, 2013). For example, a method for computing the Lipschitz constant of deep
neural networks to assist with their robustness and verification analyses was recently proposed
in (Fazlyab et al., 2019) and (Bhowmick et al., 2021). Additionally, there are evolutionary strategies
for global optimization using the covariance matrix computation (Hansen and Ostermeier, 2001;
Igel et al., 2007). In our approach, for global optimization, we use random sampling and compute
neighbourhoods (Lipschitz caps) of the samples, where we have probabilistic knowledge about the
values, such that we are able to correspondingly estimate the stochastic global optimum with high
confidence. (Zhigljavsky and Zilinskas, 2008).

Verification of Neural Networks. A large body of work tried to enhance the robustness of neural
networks against adversarial examples (Goodfellow et al., 2014; Szegedy et al., 2013). There are
efforts that show how to break the many defense mechanisms proposed (Athalye et al., 2018; Uesato
et al., 2018; Lechner et al., 2020b, 2021; Babaiee et al., 2021), until the arrival of methods for formally
verifying robustness to adversarial attacks around neighborhoods of data (Tjeng et al., 2018; Wong
and Kolter, 2018; Henzinger et al., 2021). The majority of these complete verification algorithms for
neural networks work on piece-wise linear structures of small- to-medium-size feedforward networks
(Salman et al., 2019). For instance, (Bunel et al., 2020b) has recently introduced a BaB method
that outperforms state-of-the-art verification methods (Katz et al., 2017; Wang et al., 2018; Tjeng
et al., 2018; Tjandraatmadja et al., 2020). A more scalable approach for rectified linear unit (ReLU)
networks (Nair and Hinton, 2010) was recently proposed based on Lagrangian decomposition; this
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approach significantly improves the speed and tightness of the bounds (De Palma et al., 2021).
The proposed approach not only improves the tightness of the bounds but also performs a novel
branching that matches the performance of the learning-based methods (Lu and Mudigonda, 2020)
and outperforms state-of-the-art methods (Zhang et al., 2018; Singh et al., 2020; Bak et al., 2020;
Henriksen and Lomuscio, 2020). While these verification approaches work well for feed-forward
networks with growing complexity, they are not suitable for recurrent and continuous neural network
instances (Hasani, 2020; Hasani et al., 2017a; Lechner and Hasani, 2020), which we address in this
work.

Verification of Continuous-time Systems. Reachabilty analysis is a verification approach that
provides safety guarantees for a given continuous dynamical system (Henzinger and Rusu, 1998;
Alur et al., 2000; Islam et al., 2016; Ruan et al., 2018; Gurung et al., 2019; Vinod and Oishi, 2021).
Most dynamical systems in safety-critical applications (Hasani et al., 2016; Wang et al., 2017; Hasani
et al., 2017b; Wang et al., 2019; Hasani et al., 2019b; Brunnbauer et al., 2021) are highly nonlinear
and uncertain in nature (Hasani et al., 2019a; DelPreto et al., 2018; Lechner et al., 2020a). The
uncertainty can be in the system’s parameters (Wang et al., 2015; Fränzle et al., 2010; Shmarov and
Zuliani, 2015a; Enszer and Stadtherr, 2011), or their initial state (Enszer and Stadtherr, 2011; Huang
et al., 2017). This is often handled by considering balls of a certain radius around them. Nonlinearity
might be inherent in the system dynamics, or due to discrete mode-jumps (Fränzle et al., 2011), We
provide a summary of methods developed for the reachability analysis of continuous-time ODEs in
Table 1.

A fundamental shortcoming of the majority of the methods described in Table 1 is their lack of
scalability while providing conservative bounds. Even approaches such as Stochastic Lagrangian
Reachability (SLR) (Grunbacher et al., 2021) which guarantees convergence of their verification
algorithm on large-scale systems, in practice fail to complete the verification of ODE-based neural
networks given a larger time horizon. In this paper, we show that GoTube establishes the state-of-the
art for the verification of ODE-based systems in terms of speed, time-horizon, task completion, and
scalability on a large set of experiments.

Table 1: Related work on the reachability analysis of continuous-time systems. Determ.= Determinis-
tic. "No" indicates a stochastic method. Table content is partially reproduced from Grunbacher et al.
(2021).

Technique Determ. Parallel wrapping Arbitrary
effect Time-horizon

LRT (Cyranka et al., 2017) with Infinitesimal strain theory yes no yes no
CAPD (Kapela et al., 2020) implements Lohner algorithm yes no yes no
Flow-star (Chen et al., 2013b) with Taylor models yes no yes no
δ-reachability (Gao et al., 2013) with approximate satisfiability yes no yes no
C2E2 (Duggirala et al., 2015) with discrepancy functions yes no yes no
LDFM (Fan et al., 2017) by simulation, matrix measures yes yes no no
TIRA (Meyer et al., 2019) with second-order sensitivity yes yes no no
Isabelle/HOL (Immler, 2015) with proof-assistant yes no yes no
Breach (Donzé, 2010; Donzé and Maler, 2007) by simulation yes yes no no
PIRK (Devonport et al., 2020) with contraction bounds yes yes no no
HR (Li et al., 2020a) with hybridization yes no yes no
ProbReach (Shmarov and Zuliani, 2015b) with δ-reachability, no no yes no
VSPODE (Enszer and Stadtherr, 2011) using p-boxes no no yes no
Gaussian process (GP) (Bortolussi and Sanguinetti, 2014) no no no no
Stochastic Lagrangian reachability SLR (Grunbacher et al., 2021) no yes no no
GoTube (Ours) no yes no yes

3 Setup

In this section, we introduce our notation, preliminary concepts, and definitions required to state and
prove the stochastic bounds that GoTube guarantees for time-continuous process models.

Continuous-depth models. These are a special case of nonlinear ordinary differential equations
(ODEs), where the model is defined by the derivative of the unknown states x computed by a vector-
valued function f : Rn → Rn, which is assumed to be Lipschitz-continuous and forward-complete:

∂tx = f(x), x(t0) ∈ B0 =B(x0, δ0), (1)
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where B0 defines the initial ball (a region of initial states, whose radius quantifies the magnitude
δ0 of a perturbation of its center x0) equivalent to (Grunbacher et al., 2021). Time dependence can
be incorporated by an additional variable x with δtx = 1. Thus this definition naturally extends to
time-varying ODEs. Nonlinear ODEs do not have in general closed-form solutions, and therefore
one can not compute symbolically the solution χ(tj , x) for all x∈B0. For a sequence of k timesteps
from time t0 until time horizon T : t0< . . .< tk = T , we use numerical ODE solvers to compute
χ(tj , x) of the initial value problem (IVP) in Eq. (1) at time tj starting at different points x(t0) =x.

We extend this computation to the entire ball, by numerically integrating the center x0 and a set of
points x∈V , uniformly sampled from the surface of the ball, and using this information to compute
stochastic upper bounds for the propagated perturbation δ0 of the center x0 at every time tj . Building
up on the setup definitions in (Grunbacher et al., 2021), we define the following:

Definition 1 (Bounding ball) Given an initial ball B0 =B(x0, δ0), we call B(χ(tj , x0), δj(B0)) a
bounding ball at time tj , if it stochastically bounds the reachable states x at time tj for all initial
points around x0 having the maximal initial perturbation δ0.

According to the notation at (Grunbacher et al., 2021), we refer to the bounding ball at time tj simply
as Bj = B(xj , δj), whenever the initial values x0 and δ0 are known from the context.

Definition 2 (Bounding Tube) Given an initial ball B0 = B(x0, δ0) and bounding balls for
t0< . . .< tk =T , we call the series of bounding balls B1,B2, . . . ,Bk a bounding tube.

Maximum perturbation at time tj . To compute a bounding tube, we have to compute at every timestep
tj the maximum perturbation δj , which is defined as a solution of the optimization problem:

δj ≥ max
x∈B0

‖χ(tj , x)− χ(tj , x0)‖ = max
x∈B0

d(tj , x), (2)

where dj(x) = d(tj , x) denotes the distance at time tj , if the initial center x0 is known from the
context. As stated in (Grunbacher et al., 2021), the radius at time tj can be over-approximated
by solving a global optimization problem on the surface of the initial ball BS0 : as we require
Lipschitz-continuity and forward-completeness of the ODE in Eq. (1), the map x 7→ χ(tj , x) is a
homeomorphism and commutes with closure and interior operators. In particular, the image of the
boundary of the set B0 is equal to the boundary of the image χ(tj ,B0). Thus, Eq. (2) has its optimum
on the surface of the initial ball BS0 = surface(B0), and we will only consider points on the surface.

Definition 3 (Lipschitz cap) Let V be the set of all sampled points, x ∈ V be a sample point on
the surface of the initial ball, m̄j,V = maxx∈V dj(x) be the sample maximum and B(x, rx)S =
B(x, rx) ∩ BS0 be a spherical cap around that point. We call the cap B(x, rx)S a γ, tj-Lipschitz cap,
if it holds that Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ for all y ∈ B(x, rx)S .

Lipschitz caps around the samples enable us to calculate a probability of having found an upper
bound of the true maximum m?

j = dj(x
?
j ) = maxx∈B0 dj(x) of the optimization problem in Eq. (2),

as it follows from the definition that if the Lipschitz cap of a sample x ∈ BS0 covers x?j , then it follows
that Pr(m?

j ≤ µ · dj(x)) ≥ 1− γ. Intuitively, the points within a cap do not have to be explored.

4 Main Results

Our GoTube algorithm and its theory is inspired by the stochastic lagrangian reachability (SLR)
algorithm (Grunbacher et al., 2021). However, it solves SLR’s fundamental scalability problems.

On the one hand, we replaced gradient descent by implementing tensorization and substantially
increasing the number of random samples used. On the other hand, we gave up interval arithmetic for
computing a conservative upper bound for the Lipschitz constant, thus replacing deterministic caps
with stochastic Lipschitz caps. To be able to do that, we formulated Theorems on: 1) How to choose
the radius of a Lipschitz cap using the local Lipschitz constants of the samples together with the
expected difference quotients. 2) Convergence guarantees using these new stochastic caps, as they are
used by GoTube to compute the probability of δj being an upper bound of the biggest perturbation.

We start by describing the GoTube Algorithm. This facilitates the comprehension of the different
computation and theory steps. Given a continuous-depth model as in Eq. (1), an initial ball B0 defined
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Algorithm 1 GoTube

Require: initial ball B0 = B(x0, δ0), time horizon T, sequence of timesteps tj (t0 < · · · < tk = T ),
tolerance µ> 1, confidence level γ ∈ (0, 1), batch size b, distance function d

1: V ← {} (list of visited random points)
2: sample batch xB ∈ BS0
3: for (j = 1; j ≤ k; j = j + 1) do
4: p̄← 0
5: while p̄ < 1− γ do
6: V ← V ∪ {xB}
7: xj ← χ(tj , x0) (integrate initial center point)
8: m̄j,V ← maxx∈V d(tj , x)
9: compute local Lipschitz constants λx for x ∈ V

10: compute expected local difference quotient ∆λx,V for x ∈ V
11: compute cap radii rx(λx,∆λx,V) (Thm. 1) for x ∈ V
12: S ←

⋃
x∈V B(x, rx)S (total covered area)

13: p̄← Pr(µ · m̄j,V ≥ m?)
14: sample batch xB ∈ B0
15: end while
16: δj ← µ · m̄j,V
17: Bj ← B(xj , δj)
18: end for
19: return (B1, . . . ,Bk)

by a center point x0 and the maximum initial perturbation δ0, a time horizon T with a sequence of
timesteps tj (t0< . . .< tk = T ), a confidence level γ ∈ (0, 1), a maximum multiplicative tolerance
of over-approximation µ> 1, a batch size b, and a distance function d. The output of the GoTube
algorithm is a bounding tube that stochastically over-approximates at most by µ the propagated initial
perturbation from the center x0 with a probability higher than 1− γ. Although the input and output
is similar to (Grunbacher et al., 2021), we had to significantly change the algorithm by creating new
theorems, such that GoTube is scalable and works also on continuous-depth models.

GoTube starts by sampling a batch (tensor) xB ∈ BS0 . It then iterates for the k steps of the time
horizon T the following. After initializing the probability ensured to zero, and the visited states to
the empty set, it loops until it reaches the desired confidence (probability) 1− γ, by increasingly
taking additional batches. In each iteration, it integrates the center and the already available samples
from their previous time step, and the possibly new batches from their initial state (for simplicity, the
pseudocode does not make this distinction explicit). GoTube then computes the maximum distance
from the integrated samples to the integrated center, their local Lipschitz constant, as in (Grunbacher
et al., 2021), according to the variational equation of Eq. (1). Based on this information GoTube then
computes the mean Lipschitz statistics and the cap radii accordingly. The total surface of the caps
is then employed to compute and update the achieved confidence (probability). Once the desired
confidence is achieved, GoTube exits the inner loop, and computes the bounding ball in terms of its
center and radius. After exiting the outer loop GoTube returns the bounding tube.

Theorem 1 (Radius of Lipschitz Caps) Given a continuous-depth model f from Eq. (1), γ ∈ (0, 1),
µ> 1, target time tj , the set of all sampled points V , the number of sampled pointsN = |V|, the sample
maximum m̄j,V = maxx∈V dj(x), the IVP solutions χ(tj , x), and the corresponding stretching
factors λx = ‖∂xχ(tj , x)‖ for all x∈V . For x∈V , let νx = |λx−λX |/‖x−X‖ be a new random
variable, where X ∈BS0 is the random variable which is thrown by random sampling on the surface
of the initial ball. Let the upper bound ∆λx,V of the confidence interval of Eνx be defined as follows:

∆λx,V(γ) = νx + t∗γ/2(N − 2)
s(νx)√
N − 1

, (3)

with νx and s(νx) being the sample mean and sample standard deviation of νx, and t∗ being the
Student’s t-distribution. Let rx be defined as:

rx = (2 ·∆λx,V)−1
(
−λx +

√
λ2x + 4 ·∆λx,V · (µ · m̄j,V − dj(x))

)
, (4)
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GoTube constructs as-tight-as 
possible reachtubes

GoTube constructs reachtubes up
to an arbitrary  time-horizon

Figure 3: Visualization of the reachtubes constructed for the Dubin’s car model with various reacha-
bility methods. While the tubes computed by existing methods (LRT-NG, Flow* and CAPD) explode
at t≈ 20s due to the accumulation of over-approximation errors (the infamous wrapping effect),
GoTube can keep tight bounds beyond t> 40s. Note also the chaotic nature of 100 executions.

then it holds that:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ ∀y ∈ B(x, rx)S , (5)

and thus that B(x, rx)S is a γ, tj-Lipschitz cap.

The full proof is provided in the Appendix. Proof sketch: As ∆λx,V is the upper bound of the
confidence interval of Eνx, it holds that Pr(λy ≤ λx + ∆λx,V · ‖x− y‖) ≥ 1− γ. Therefore Eq. (4)
follows by solving the following equation: (µ ·m̄j,V−dj(x)) = λxrx+∆λx,Vr

2
x and using a similar

proof to the one of (Grunbacher et al., 2021)[Theorem 1].

We now state that the convergence guarantee holds for the GoTube Algorithm, to ensure that the
Algorithm terminates in finite time.

Theorem 2 (Convergence Guarantee using Lipschitz caps) Given the over-approximation factor
µ > 1, the set of all sampled points V and the sample maximum m̄j,V = maxx∈V dj(x). Let
m?
j = maxx∈B0 dj(x) be the initial ball maximum. Then:

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≥ m?
j ) ≥ 1− γ, (6)

where N = |V| is the number of sampled points.

The full proof is provided in the Appendix. Proof sketch: Let x?j be a point such that dj(x?j ) = m?
j .

Given γ ∈ (0, 1) and cap radii rx, we know from the proof of (Grunbacher et al., 2021)[Theorem
2] that ∃N ∈ N : Pr(∃x ∈ V : B(x, rx)S 3 x?j ) ≥

√
1− γ. Using a set of sampled points V

with cardinality N and using 1 −
√

1− γ instead of γ in Eq. (3) and Theorem 1, the resulting
probability is larger than

√
1− γ. From the definition of a Lipschitz cap it follows that Pr(dj(x

?) ≤
µ·m̄j,V |∃x ∈ V : B(x, rx)S 3 x?) ≥

√
1− γ. For any setsA,B it holds that Pr(A) ≥ Pr(A∩B) =

Pr(A|B) · Pr(B), thus we multiply both probabilities and therefore Eq. (6) holds.

5 Experimental Evaluation

We perform a diverse set of experiments with GoTube to evaluate its performance and identify its
characteristics and limits in verifying continuous-time systems with increasing complexity. We run
our evaluations on a standard workstation machine setup (12 vCPUs, 64GB memory) equipped with
single GPU, for a per-run timeout of 1 hour.
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Table 2: Comparison of GoTube to existing reachability methods. Benchmark models and results of
other methods from (Gruenbacher et al., 2020). The first six benchmarks concern classical dynamical
systems, whereas the two bottom rows correspond to time-continuous RNN models (LTC= liquid
time-constant networks) in a closed feedback loop with an RL environment (Lechner et al., 2019;
Hasani et al., 2020, 2021b; Vorbach et al., 2021). The numbers show the volume of the constructed
tube. Lower is better, best number in bold.

Benchmark LRT-NG Flow* CAPD LRT GoTube
(50%) (90%) (99%)

Brusselator 1.5e-4 9.8e-5 3.6e-4 6.1e-4 8.6e-5 8.6e-5 8.6e-5
Van Der Pol 4.2e-4 3.5e-4 1.5e-3 3.7e-3 5.0e-4 5.0e-4 5.0e-4
Robotarm 7.9e-11 8.7e-10 1.1e-9 Fail 2.5e-10 2.5e-10 2.5e-10
Dubins Car 0.131 4.5e-2 0.1181 385 1.5e-2 2.5e-2 2.6e-2
Cardiac-cell 3.7e-9 1.5e-8 4.4e-8 3.2e-8 4.2e-8 4.2e-8 4.5e-8
CartPole-v1+Linear 7.2e-17 7e-13 2.6e-13 Fail 3.2e-8 3.2e-8 3.2e-8

CartPole-v1+LTC 4.49e-33 Fail Fail Fail 1.3e-37 2.6e-37 4.9e-37
CartPole-v1+CTRNN 3.9e-27 Fail Fail Fail 5.4e-34 9.9e-34 1.2e-33

5.1 On the volume of the bounding balls with GoTube

Our first experimental evaluation concerns the over-approximation errors of the constructed bounding
tubes. An ideal reachability tool should be able to output an as tight as possible tube that encloses the
system’s executions. Consequently, as our comparison metric we will report the average volume of
the bounding balls, with less volume is better. We use the benchmarks and settings of (Gruenbacher
et al., 2020) (same radii, time horizons, and models) as basis of our evaluation. In particular, we
compare GoTube to the deterministic, state-of-the-art reachablity tools LRT-NG, Flow*, CAPD and
LRT. We measure the volume of GoTube’s balls at the confidence levels of 50%, 90% and 99%.

The results are shown in Table 2. For the first six benchmarks, which are classical dynamical systems,
we use the small time horizons T and small initial radii δ0, which the other tools could handle.
GoTube with a 99% confidence achieves a competitive performance to the other tools, outperforming
them in 2 out of 6 benchmarks. The specific reachtubes and the chaotic nature of hundred executions
of the Dubin’s car are shown in Figure 3. As one can see, the GoTube reachtube extends to a much
longer time horizon, which we fixed at 40s. All other tools blew up before 20s. For the two problems
involving neural networks, GoTube produces significantly tighter reachtubes.

5.2 GoTube provides safety bounds up an arbitrary time horizon

In our second experiment, we evaluate for how long GoTube and existing methods can construct a
reachtube before exploding due to over-approxmiation errors. To do so, we extend the benchmark
setup of (Gruenbacher et al., 2020) by increasing the time horizon for which the tube should be
constructed and set GoTube to a 95% confidence level, that is, probability of being conservative.

Table 3: Results of the extended benchmark of (Gruenbacher et al., 2020) by longer time horizons.
The numbers show the volume of the constructed tube, “Blowup” indicate that the method produced
Inf or NaN values due to a blowup. Lower is better, best method shown in bold.

Benchmark CartPole-v1+CTRNN CartPole-v1+LTC
Time horizon 1s 10s 0.35s 10s

LRT Blowup Blowup Blowup Blowup
CAPD Blowup Blowup Blowup Blowup
Flow* Blowup Blowup Blowup Blowup
LRT-NG 3.9e-27 Blowup 4.5e-33 Blowup
GoTube (ours) 8.8e-34 1.1e-19 4.9e-37 8.7e-21

The results in Table 3 demonstrate that GoTube produces significantly longer reachtubes than all
considered state-of-the-art approaches, without suffering from severe over-approximation errors.
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Table 4: Volume of the reachtube constructed by GoTube for our three newly proposed benchmarks.
The volume stays small for increasing radius of the set of initial states r = 0.01.

Benchmark r 5r 10r

LDS + CT-RNN 7.0e-11 5.9e-4 0.702
Inverted Pendulum + CT-RNN 1.4e-12 1.5e-05 0.0178
Oscillatory CT-RNN 4.7e-37 7.8e-26 4.8e-21

Particularly, Figure 1 visualizes the difference to the existing methods and over-approximation
margins for two example dimensions of the CartPole-v1 environment and its CT-RNN controller.

5.3 GoTube can use significantly larger perturbation radius for its initial ball

In our last experiment we introduce a new set of benchmark models, entirely based on continuous-
time recurrent neural networks. The first model is an unstable linear dynamical system of the form
ẋ = Ax+Bu that is stabilized by a CT-RNN policy via actions u. The second model corresponds
to the inverted pendulum environment, which is similar to the CartPole environment but differs by
that the control actions are applied via a torque vector on the pendulum directly instead of moving a
cart. The CT-RNN policies for these two environments were trained using deep RL. Our third new
benchmark model concerns the analysis of the learned dynamics of a CT-RNN trained on supervised
data. In particular, we want to asses using reachability frameworks if the learned network expressed
oscillatory behavior. The CT-RNN state vector consists of 16 dimensions, which is twice as much as
existing CT-RNN reachability benchmarks (Gruenbacher et al., 2020). We vary the radius of the set
of initial states r ∈ {0.01, 0.05, 0.1} to evaluate whether GoTube can handle larger initial sets.

The results for a time horizon of 10s in the first two examples, and of 2s in the last example, are
shown in Table 4. They demonstrate that GoTube can scale to different initial conditions, that is,
perturbation magnitudes, and set a new benchmark for future methods to compare with.

6 Discussions, Scope and Conclusions
We proposed a new stochastic verification algorithm (GoTube) that scales up to providing robustness
guarantees (also safety guarantees if a set of states to be avoided is given) for complex time-continuous
systems. GoTube is stable and sets the state-of-the-art for its ability to scale up to time-horizons
well-beyond what has been possible before. The algorithm moreover allows larger perturbation
radius for the initial ball for which other models fail. Lastly, GoTube scales up to the verification of
advanced continuous-depth neural models where state-of-the-art deterministic approaches fail.

Stochastic Lagrangian Reachability (SLR) vs. GoTube? SLR (Grunbacher et al., 2021) is a
theoretical stochastic-reachability framework quantifying the robustness of continuous-depth models,
in particular of neural ODEs. Using our code base we implemented SLR, as no implementation was
available yet, and observed that although it does not blow up in space, it blows up in time such that
we were not able to construct reachtubes for our high-dimensional benchmarks.

What about Gaussian Processes as a tool for stochastic verification? Gaussian Processes (GP)
are powerful stochastic models which can be used for stochastic reachability analysis (Bortolussi
and Sanguinetti, 2014) and uncertainty estimation for stochastic dynamical systems (Gal, 2016). The
major shortcoming of GPs is that they simply cannot scale to the complex continuous-time systems
that we tested here. Moreover, Gaussian Processes have a large number of hyperparameters to set
which can be challenging to tune across different benchmarks.

Limitations of GoTube. GoTube does not necessarily perform better in terms of average volume of
the bounding balls for smaller tasks and short time horizons, as shown in Table 2. GoTube is not yet
suitable for the verification of stochastic dynamical systems for instance Neural Stochastic Differential
Equations (Neural SDEs) (Li et al., 2020b; Xu et al., 2021). Although GoTube is considerably more
computationally efficient than existing methods, the dimensionality of the system-under-test as well
as the type of numerical ODE solver exponentially affect their performance. We can improve on this
limitation by using Hypersolvers (Poli et al., 2020), closed-form continuous depth models (Hasani
et al., 2021a), and compressed representations of neural ODEs (Liebenwein et al., 2021).
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Future of GoTube. GoTube opens many avenues for future research. The most straightforward
next step is to search for better intermediate steps in Algorithm 1. For instance better ways to
compute the Lipschitz constant and improving the sampling process. GoTube is now applicable for
complex deterministic ODE systems; it would be an important line of work to find ways to mary
reachability analysis with machine learning approaches to verify neural SDEs as well. Last but
not least, we believe that there is a close relationship between stochastic reachability analysis and
uncertainty estimation techniques used for deep learning models (Abdar et al., 2021). Approaches
such as Evidential Regression (Amini et al., 2019) provide stochastic bounds over the uncertainty
of large-scale machine learning models, very similar to the objective of our GoTube algorithm.
Uncertainty-aware verification could be worth to explore based on what we learned with GoTube.
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networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
3787–3795, 2021.

Chao Huang, Xin Chen, Wang Lin, Zhengfeng Yang, and Xuandong Li. Probabilistic safety verifica-
tion of stochastic hybrid systems using barrier certificates. ACM Trans. Embed. Comput. Syst., 16
(5s), September 2017. ISSN 1539-9087.

C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective optimization.
Evolutionary Computation, 15(1):1–28, 2007.

Fabian Immler. Verified reachability analysis of continuous systems. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 37–51,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Md Ariful Islam, Qinsi Wang, Ramin M Hasani, Ondrej Balún, Edmund M Clarke, Radu Grosu, and
Scott A Smolka. Probabilistic reachability analysis of the tap withdrawal circuit in caenorhabditis
elegans. In 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT),
pages 170–177. IEEE, 2016.

Tomasz Kapela, Marian Mrozek, Daniel Wilczak, and Piotr Zgliczynski. Capd:: Dynsys: a flexible
c++ toolbox for rigorous numerical analysis of dynamical systems. Pre-Print - ww2.ii.uj.edu.pl,
2020.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, pages 97–117. Springer, 2017.

Dmitri E Kvasov and Ya D Sergeyev. Lipschitz global optimization methods in control problems.
Automation and Remote Control, 74(9):1435–1448, 2013.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Mathias Lechner, Ramin Hasani, Manuel Zimmer, Thomas A Henzinger, and Radu Grosu. Designing
worm-inspired neural networks for interpretable robotic control. In 2019 International Conference
on Robotics and Automation (ICRA), pages 87–94. IEEE, 2019.

Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu
Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10):
642–652, 2020a.

Mathias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. Gershgorin loss stabilizes the
recurrent neural network compartment of an end-to-end robot learning scheme. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 5446–5452. IEEE, 2020b.

Mathias Lechner, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Henzinger. Adversarial
training is not ready for robot learning. arXiv preprint arXiv:2103.08187, 2021.

13



Dongxu Li, Stanley Bak, and Sergiy Bogomolov. Reachability analysis of nonlinear systems using
hybridization and dynamics scaling. In Nathalie Bertrand and Nils Jansen, editors, Formal
Modeling and Analysis of Timed Systems, pages 265–282, Cham, 2020a. Springer International
Publishing.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pages 3870–3882. PMLR, 2020b.

Lucas Liebenwein, Ramin Hasani, Alexander Amini, and Daniela Rus. Sparse flows: Pruning
continuous-depth models. arXiv preprint arXiv:2106.12718, 2021.

J Lu and P Mudigonda. Nueral network branching for nueral network verification. In Proceedings of
the International Conference on Learning Representations (ICLR 2020). Open Review, 2020.

Cedric Malherbe and Nicolas Vayatis. Global optimization of lipschitz functions. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, page 2314–2323.
JMLR.org, 2017.

Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Tira: Toolbox for interval reachability analysis.
In Association for Computing Machinery, HSCC ’19, page 224–229, New York, NY, USA, 2019.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning, pages 3578–3586.
PMLR, 2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine
Learning, pages 807–814, 2010.

Arnold Neumaier. Complete search in continuous global optimization and constraint satisfaction.
Acta Numerica, 13:271–369, 2004.

S.A. Piyavskii. An algorithm for finding the absolute extremum of a function. USSR Computational
Mathematics and Mathematical Physics, 12(4):57 – 67, 1972.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park, et al. Hy-
persolvers: Toward fast continuous-depth models. Advances in Neural Information Processing
Systems, 33, 2020.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep neural
networks with provable guarantees. arXiv preprint arXiv:1805.02242, 2018.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relax-
ation barrier to tight robustness verification of neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf.

Fedor Shmarov and Paolo Zuliani. Probreach: verified probabilistic delta-reachability for stochastic
hybrid systems. In Antoine Girard and Sriram Sankaranarayanan, editors, Proceedings of the 18th
International Conference on Hybrid Systems: Computation and Control, HSCC’15, Seattle, WA,
USA, April 14-16, 2015, pages 134–139. ACM, 2015a.

Fedor Shmarov and Paolo Zuliani. Probreach: A tool for guaranteed reachability analysis of stochastic
hybrid systems. In Sergiy Bogomolov and Ashish Tiwari, editors, 1st International Workshop on
Symbolic and Numerical Methods for Reachability Analysis, SNR@CAV 2015, San Francisco, CA,
USA, July 19, 2015, volume 37 of EPiC Series in Computing, pages 40–48. EasyChair, 2015b.
URL https://easychair.org/publications/paper/z1f.

Bruno O. Shubert. A sequential method seeking the global maximum of a function. SIAM Journal
on Numerical Analysis, 9(3):379–388, 1972. ISSN 00361429. URL http://www.jstor.org/
stable/2156138.

14

https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://easychair.org/publications/paper/z1f
http://www.jstor.org/stable/2156138
http://www.jstor.org/stable/2156138


Gagandeep Singh, Jonathan Maurer, Christoph Müller, Matthew Mirman, Timon Gehr, Adrian
Hoffmann, Petar Tsankov, Dana Drachsler Cohen, Markus Püschel, and Martin Vechev. Eth
robustness analyzer for neural networks (eran). URL https://github. com/eth-sri/eran, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, KRUNAL KISHOR PATEL, and
Juan Pablo Vielma. The convex relaxation barrier, revisited: Tightened single-neuron relaxations
for neural network verification. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 21675–21686.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf.

Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. In International Conference on Learning Representations, 2018.

Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord. Adversarial risk and the
dangers of evaluating against weak attacks. In International Conference on Machine Learning,
pages 5025–5034. PMLR, 2018.

Abraham P Vinod and Meeko MK Oishi. Stochastic reachability of a target tube: Theory and
computation. Automatica, 125:109458, 2021.

Charles Vorbach, Ramin Hasani, Alexander Amini, Mathias Lechner, and Daniela Rus. Causal
navigation by continuous-time neural networks. arXiv preprint arXiv:2106.08314, 2021.

Guodong Wang, Ramin M Hasani, Yungang Zhu, and Radu Grosu. A novel bayesian network-based
fault prognostic method for semiconductor manufacturing process. In 2017 IEEE International
Conference on Industrial Technology (ICIT), pages 1450–1454. IEEE, 2017.

Guodong Wang, Anna Ledwoch, Ramin M Hasani, Radu Grosu, and Alexandra Brintrup. A
generative neural network model for the quality prediction of work in progress products. Applied
Soft Computing, 85:105683, 2019.

Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M. Clarke. Sreach: A probabilistic
bounded delta-reachability analyzer for stochastic hybrid systems. In Olivier Roux and Jérémie
Bourdon, editors, Computational Methods in Systems Biology, pages 15–27, Cham, 2015. Springer
International Publishing.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pages 5286–5295. PMLR,
2018.

Winnie Xu, Ricky TQ Chen, Xuechen Li, and David Duvenaud. Infinitely deep bayesian neural
networks with stochastic differential equations. arXiv preprint arXiv:2102.06559, 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf.

Anatoly Zhigljavsky and Antanas Zilinskas. Stochastic Global Optimization, volume 9 of Springer
Optimization and Its Applications. Springer US, 2008.

15

https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2ecd2bd94734e5dd392d8678bc64cdab-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf


S1 Proofs

Theorem 3 (Radius of Lipschitz Caps) Given the continuous-depth model f of Eq. (1) in the main
paper (∂tx= f(x) with x(t0)∈ B(x0, δ0)). Let γ ∈ (0, 1), µ> 1, target time tj , the set of all sampled
points V , the number of sampled points N = |V|, the sample maximum m̄j,V = maxx∈V dj(x), the
IVP solutions χ(tj , x), and the corresponding stretching factors λx = ‖∂xχ(tj , x)‖ for all x∈V .
For x∈V , let νx = |λx−λX |/‖x−X‖ be a new random variable, where X ∈BS0 is the random
variable which is thrown by random sampling on the surface of the initial ball. Let the upper bound
∆λx,V of the confidence interval of Eνx be defined as follows:

∆λx,V(γ) = νx + t∗γ/2(N − 2)
s(νx)√
N − 1

, (S1)

with νx and s(νx) being the sample mean and sample standard deviation of νx, and t∗ being the
Student’s t-distribution. Let rx be defined as:

rx = (2 ·∆λx,V)−1
(
−λx +

√
λ2x + 4 ·∆λx,V · (µ · m̄j,V − dj(x))

)
, (S2)

then it holds that:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ ∀y ∈ B(x, rx)S , (S3)

and thus that B(x, rx)S is a γ, tj-Lipschitz cap.

Proof. Eq. (3) defines ∆λx,V as the upper bound of the confidence interval for the mean Eνx with
unknown standard deviation, confidence coefficient 1− γ and sample size N − 1 (we compare the
stretching factor λx with the ones of the other N − 1 samples), thus

Pr(∆λx,V ≥ Eνx) ≥ 1− γ, with Eνx = E
[
|λx − λX |
‖x−X‖

]
(S4)

It holds for x, y ∈ V that:

λy = λx +
λy − λx
‖x− y‖

· ‖x− y‖

≤ λx +
|λx − λy|
‖x− y‖

· ‖x− y‖, thus using Eq. (S4)

Pr
(
λy ≤ λx + ∆λx,V · ‖x− y‖

)
≥ 1− γ (S5)

Using the mean value inequality for vector-valued functions it holds that:

|dj(x)− dj(y)| = |‖χ(tj , x)− χ(tj , x0)‖ − ‖χ(tj , y)− χ(tj , x0)‖| {triangle inequality} (S6)
≤ ‖χ(tj , x)− χ(tj , y)‖ {mean value theorem} (S7)

⇒ ∃z ∈ [x, y] : |dj(x)− dj(y)| ≤ ‖∂xχ(tj , z)‖‖x− y‖ = λz · ‖x− y‖ (S8)

Combining this with Eq. (S5) and thus using λx + ∆λx,V · ‖x− y‖ as a probabilistic upper bound
for λz , we obtain the following results for all y with ‖x− y‖ ≤ rx:

Pr
(
|dj(x)− dj(y)| ≤ (λx + ∆λx,V · ‖x− y‖) · ‖x− y‖

)
≥ 1− γ (S9)

Pr
(
|dj(x)− dj(y)| ≤ (λx + ∆λx,V · rx) · rx

)
≥ 1− γ (S10)

As rx defined like in Eq. (4) is the solution of the quadratic equation µ · m̄j,V − dj(x) = λxrx +
∆λx,Vr

2
x, it holds that:

Pr
(
|dj(x)− dj(y)| ≤ µ · m̄j,V − dj(x))

)
≥ 1− γ ∀y ∈ B(x, rx)S (S11)

As in the proof of (Grunbacher et al., 2021)[Theorem 1] we now distinguish between two cases for y:
(a) dj(y) ≤ dj(x) and (b) dj(y) ≥ dj(x). In case (a) it is trivial: dj(y) ≤ dj(x) ≤ µ · m̄j,V . Having
case (b), Eq. (S11) is equivalent to

Pr
(
dj(y)− dj(x) ≤ µ · m̄j,V − dj(x))

)
≥ 1− γ ⇐⇒ (S12)

Pr
(
dj(y) ≤ µ · m̄j,V)

)
≥ 1− γ, (S13)

thus Eq. (5) holds and B(x, rx)S is a Lipschitz cap.
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Theorem 4 (Convergence Guarantee using Lipschitz caps) Given the over-approximation factor
µ> 1, the set of all sampled points V and the sample maximum m̄j,V = maxx∈V dj(x). Let m?

j =
maxx∈B0

dj(x) be the initial-ball maximum (the global maximum). Then:

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≥ m?
j ) ≥ 1− γ, (S14)

where N = |V| is the number of sampled points.

Proof. Let x?j be a point such that dj(x?j ) = m?
j . Given γ ∈ (0, 1) and cap radii rx as defined in

Eq. (4), we know from the proof of (Grunbacher et al., 2021)[Theorem 2] that

Pr(∃y ∈ V : B(y, ry)S 3 x?j ) = 1−
∏
x∈V

(1− prx) , with (S15)

prx = Pr(B(x, rx)S 3 x?j ) =
Area(B(x, rx)S)

Area (B0)
(S16)

As in the proof of (Grunbacher et al., 2021)[Theorem 2] we derive a lower bound of rx by using the
first sample xj,1 and replacing the values in Eq. (4) as follows:

µ · m̄j,V − dj(x) ≥ µ · m̄j,V − m̄j,V = (µ− 1) · m̄j,V ≥ (µ− 1) · dj(xj,1), (S17)

thus a lower bound of all Lipschitz cap radii is given by

rbound = (2 ·∆λx,V)−1
(
−λx +

√
λ2x + 4 ·∆λx,V · (µ− 1) · dj(xj,1)

)
≤ rx ∀x ∈ V (S18)

⇒ Pr(∃y ∈ V : B(y, ry)S 3 x?j ) ≥ 1− (1− prbound
)
N (S19)

As in the limit of N → ∞ the probability of Eq. (S19) is 1, it follows that ∀γ ∈ (0, 1) ∃N ∈
N : Pr(∃x ∈ V : B(x, rx)S 3 x?j ) ≥

√
1− γ.

Using a set of sampled points V with cardinality N and using γ̂ = 1 −
√

1− γ as the error rate
for the upper bound ∆λx of the confidence interval in Eq. (3). Using the result of Theorem 1, the
resulting probability is:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ̂ =
√

1− γ ∀y ∈ B(x, rx)S (S20)

If there is an x ∈ V such that B(x, rx)S 3 x?j , then Eq. (S20) obviously holds also for x?j , thus:

Pr(dj(x
?) ≤ µ · m̄j,V |∃x ∈ V : B(x, rx)S 3 x?) ≥

√
1− γ (S21)

For any sets A,B it holds that Pr(A) ≥ Pr(A ∩B) = Pr(A|B) · Pr(B), and using:

A = (µ · m̄j,V ≥ m?
j ) (S22)

B = (∃x ∈ V : B(x, rx)S 3 x?j ) (S23)

it follows that Pr(µ · m̄j,V ≥ m?
j ) ≥ Pr(A|B) · Pr(B) = 1− γ and therefore Eq. (6) holds.
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